Scientist use relative dating to determine the age of a rock in years

Contents

  1. Relative dating
  2. Geologic Age Dating Explained - Kids Discover
  3. PURPOSE AND OBJECTIVES

The teacher should tell the students that there are two basic principles used by geologists to determine the sequence of ages of rocks. Younger sedimentary rocks are deposited on top of older sedimentary rocks.

Relative dating

Principle of cross-cutting relations: Any geologic feature is younger than anything else that it cuts across. For example, U is an unstable isotope of uranium that has 92 protons and neutrons in the nucl eus of each atom.

FOSSILS: how fossils are dated

Through a series of changes within the nucleus, it emits several particles, ending up with 82 protons and neutrons. This is a stable condition, and there are no more changes in the atomic nucleus. A nucleus with that number of protons is called lead chemical symbol Pb. The protons 82 and neutrons total This particular form isotope of lead is called Pb U is the parent isotope of Pb, which is the daughter isotope. Many rocks contain small amounts of unstable isotopes and the daughter isotopes into which they decay.

Where the amounts of parent and daughter isotopes can be accurately measured, the ratio can be used to determine how old the rock is, as shown in the following activities. That chance of decay is very small, but it is always present and it never changes. In other words, the nuclei do not "wear out" or get "tired". If the nucleus has not yet decayed, there is always that same, slight chance that it will change in the near future.

Atomic nuclei are held together by an attraction between the large nuclear particles protons and neutrons that is known as the "strong nuclear force", which must exceed the electrostatic repulsion between the protons within the nucleus.

Navigation menu

In general, with the exception of the single proton that constitutes the nucleus of the most abundant isotope of hydrogen, the number of neutrons must at least equal the number of protons in an atomic nucleus, because electrostatic repulsion prohibits denser packing of protons. But if there are too many neutrons, the nucleus is potentially unstable and decay may be triggered.

This happens at any time when addition of the fleeting "weak nuclear force" to the ever-present electrostatic repulsion exceeds the binding energy required to hold the nucleus together.

Geologic Age Dating Explained - Kids Discover

In other words, during million years, half the U atoms that existed at the beginning of that time will decay to Pb This is known as the half life of U- Many elements have some isotopes that are unstable, essentially because they have too many neutrons to be balanced by the number of protons in the nucleus. Each of these unstable isotopes has its own characteristic half life.

Some half lives are several billion years long, and others are as short as a ten-thousandth of a second. On a piece of notebook paper, each piece should be placed with the printed M facing down. This represents the parent isotope. The candy should be poured into a container large enough for them to bounce around freely, it should be shaken thoroughly, then poured back onto the paper so that it is spread out instead of making a pile.

This first time of shaking represents one half life, and all those pieces of candy that have the printed M facing up represent a change to the daughter isotope. Then, count the number of pieces of candy left with the M facing down. These are the parent isotope that did not change during the first half life. The teacher should have each team report how many pieces of parent isotope remain, and the first row of the decay table Figure 2 should be filled in and the average number calculated. The same procedure of shaking, counting the "survivors", and filling in the next row on the decay table should be done seven or eight more times.

Each time represents a half life. Each team should plot on a graph Figure 3 the number of pieces of candy remaining after each of their "shakes" and connect each successive point on the graph with a light line. AND, on the same graph, each group should plot points where, after each "shake" the starting number is divided by exactly two and connect these points by a differently colored line.

PURPOSE AND OBJECTIVES

After the graphs are plotted, the teacher should guide the class into thinking about: Is it the single group's results, or is it the line based on the class average? U is found in most igneous rocks. Unless the rock is heated to a very high temperature, both the U and its daughter Pb remain in the rock. A geologist can compare the proportion of U atoms to Pb produced from it and determine the age of the rock. The next part of this exercise shows how this is done.


  • dating vintage earrings;
  • MATERIALS REQUIRED FOR EACH GROUP;
  • Geologic Age Dating Explained.
  • val and elizabeth dating.
  • Relative dating - Wikipedia.

Each team is given a piece of paper marked TIME, on which is written either 2, 4, 6, 8, or 10 minutes. The team should place each marked piece so that "U" is showing. This represents Uranium, which emits a series of particles from the nucleus as it decays to Lead Pb- But the most accurate forms of absolute age dating are radiometric methods.

This method works because some unstable radioactive isotopes of some elements decay at a known rate into daughter products. This rate of decay is called a half-life. Half-life simply means the amount of time it takes for half of a remaining particular isotope to decay to a daughter product.

Good discussion from the US Geological Survey: So geochronolgists just measure the ratio of the remaining parent atom to the amount of daughter and voila, they know how long the molecule has been hanging out decaying. There are a couple catches, of course. Not all rocks have radioactive elements. Sedimentary rocks in particular are notoriously radioactive-free zones. So to date those, geologists look for layers like volcanic ash that might be sandwiched between the sedimentary layers, and that tend to have radioactive elements.

You might have noticed that many of the oldest age dates come from a mineral called zircon. Each radioactive isotope works best for particular applications. The half-life of carbon 14, for example, is 5, years. On the other hand, the half-life of the isotope potassium 40 as it decays to argon is 1. Chart of a few different isotope half lifes: If a rock has been partially melted, or otherwise metamorphosed, that causes complications for radiometric absolute age dating as well.

Good overview as relates to the Grand Canyon: Have students reconstruct a simple geologic history — which are the oldest rocks shown?

Which are the youngest? I also like this simple exercise, a spin-off from an activity described on the USGS site above. Take students on a neighborhood walk and see what you can observe about age dates around you. For example, which is older, the bricks in a building or the building itself? Are there repairs or cracks in the sidewalk that came after the sidewalk was built? Have students work alone or in pairs to find an article or paper that uses radiometric age dating. From the chart, which methods are best for older materials?